Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy
نویسندگان
چکیده
Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S²PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta.
منابع مشابه
Enhanced of Nano-mechanical Properties of NiTi Alloy by Applied Nanostructured Tantalum Nitride Coating with Magnetron Sputtering method
Nowadays, suitable protective properties of tantalum nitride coatings, such as hardness, abrasion resistance and high corrosion resistance lead to increasing its application in medical engineering and improving the biological behavior of titanium and its alloys. In this research, nanostructured tantalum nitride coating was applied on the NiTi alloy by magnetron sputtering method. Then, the ...
متن کاملPulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization
This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...
متن کاملA one-dimensional model for variations of longitudinal wave velocity under different thermal conditions
Ultrasonic testing is a versatile and important nondestructive testing method. In many industrial applications, ultrasonic testing is carried out at relatively high temperatures. Since the ultrasonic w...
متن کاملMechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining (TECHNICAL NOTE)
Present work aims at multi-mechanical surface treatment of Ti-6Al-4V based-miniplate implant manufactured by electrical discharge machining (EDM) for biomedical use. Mechanical surface treatment consists of consequent use of ultrasonic cleaning, rotary tumbler polishing, and brushing. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Al...
متن کاملEvaluation of Mechanical and Thermal Properties of Polypropylene Modified with Nanostructured ZSM-5 Zeolite
Polypropylene (PP) has been one of the most widely used polymers due to the versatility and cost benefits obtained with this material. In this work, composites of PP modified with nanostructured ZSM-5 zeolite were prepared and their thermal and mechanical properties were evaluated. Zeolites were synthetized by hydrothermal method and the crystallization time was modified to evaluate the effect ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2018